Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 249-255, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645848

RESUMO

Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.

2.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442142

RESUMO

Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.


Assuntos
Síndrome da Liberação de Citocina , Interleucina-4 , Animais , Camundongos , Receptores X do Fígado , Leucina/farmacologia , Lipopolissacarídeos , Citocinas , Transdução de Sinais , Macrófagos , Alvo Mecanístico do Complexo 1 de Rapamicina
3.
Heliyon ; 10(5): e26755, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434372

RESUMO

The main aim of this study is to examine the evolving landscape of agricultural socialized services and their impact on the consistent growth of grain production in China. Using panel data from 2007 to 2020, we employ the Entropy Method to gauge the dynamic changes in agricultural socialized services that have contributed to the steady increase in grain production. The research methods include static panel, mediator, and threshold regression models to investigate the effects and mechanisms underpinning the improvement of agricultural socialized services on grain production growth. The empirical findings demonstrate a significantly positive correlation between enhanced agricultural socialized services, such as means of production services, sci-tech information services, and social public services, and increased grain production. This positive impact persists even with limited grain production resources. A mediating effect was identified, whereby agricultural socialized services indirectly stimulate grain production growth by encouraging large-scale agricultural land management. Furthermore, threshold analysis indicates the presence of a single threshold effect linked to the level of agricultural socialization services. This threshold effect plays a pivotal role in the relationship between large-scale agricultural management and steady grain production growth. The study suggests an enhancement of agricultural socialized services can promote sustained growth in grain production.

4.
Theranostics ; 14(5): 1939-1955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505601

RESUMO

Rationale: Cancer continues to be a significant public health issue. Traditional treatments such as surgery, radiotherapy, and chemotherapy often fall short because of intrinsic issues such as lack of specificity and poor drug delivery, leading to insufficient drug concentration at the tumor site and/or potential side effects. Consequently, improving the delivery of conventional chemotherapy drugs like doxorubicin (DOX) is crucial for their therapeutic efficacy. Successful cancer treatment is achieved when regulated cell death (RCD) of cancer cells, which includes apoptotic and non-apoptotic processes such as ferroptosis, is fundamental to successful cancer treatment. The developing field of nanozymes holds considerable promise for innovative cancer treatment approaches. Methods: A dual-metallic nanozyme system encapsulated with DOX was created, derived from metal-organic frameworks (MOFs), designed to combat tumors by depleting glutathione (GSH) and concurrently liberating DOX. The initial phase of the study examined the GSH oxidase-mimicking function of the dimetallic nanozyme (ZIF-8/SrSe) through enzyme kinetic assays and Density Functional Theory (DFT) simulations. Following this, we probed the ability of ZIF-8/SrSe@DOX to release DOX in response to the tumor microenvironment in vitro, alongside examining its anticancer capabilities and mechanisms prompting apoptosis or ferroptosis in cancer cells. Moreover, we established tumor-bearing animal models to corroborate the anti-tumor effectiveness of our nanozyme complex and to identify the involved apoptotic and ferroptotic pathways implicated. Results: Enzyme kinetic analyses demonstrated that the ZIF-8/SrSe nanozyme exhibits substantial GSH oxidase-like activity, effectively oxidizing reduced GSH to glutathione disulfide (GSSG), while also inhibiting glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). This inhibition led to an imbalance in iron homeostasis, pronounced caspase activation, and subsequent induction of apoptosis and ferroptosis in tumor cells. Additionally, the ZIF-8/SrSe@DOX nanoparticles efficiently delivered DOX, causing DNA damage and further promoting apoptotic and ferroptotic pathways. Conclusions: This research outlines the design of a novel platform that combines chemotherapeutic agents with a Fenton reaction catalyst, offering a promising strategy for cancer therapy that leverages the synergistic effects of apoptosis and ferroptosis.


Assuntos
Ferroptose , Neoplasias , Morte Celular Regulada , Animais , Apoptose , Sistemas de Liberação de Medicamentos , Glutationa , Dissulfeto de Glutationa , Doxorrubicina/farmacologia , Oxirredutases , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
ACS Nano ; 18(12): 8885-8905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465890

RESUMO

As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.


Assuntos
Degeneração do Disco Intervertebral , Doenças Mitocondriais , Nanopartículas , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Manganês/metabolismo , Estresse Oxidativo , Mitocôndrias , Fenóis , Doenças Mitocondriais/metabolismo , Ácido Gálico
6.
Mater Today Bio ; 25: 100993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440110

RESUMO

Osteoarthritis (OA) is a chronic inflammatory joint disease characterized by progressive cartilage degeneration, synovitis, and osteoid formation. In order to effectively treat OA, it is important to block the harmful feedback caused by reactive oxygen species (ROS) produced during joint wear. To address this challenge, we have developed injectable nanocomposite hydrogels composed of polygallate-Mn (PGA-Mn) nanoparticles, oxidized sodium alginate, and gelatin. The inclusion of PGA-Mn not only enhances the mechanical strength of the biohydrogel through a Schiff base reaction with gelatin but also ensures efficient ROS scavenging ability. Importantly, the nanocomposite hydrogel exhibits excellent biocompatibility, allowing it to effectively remove ROS from chondrocytes and reduce the expression of inflammatory factors within the joint. Additionally, the hygroscopic properties of the hydrogel contribute to reduced intra-articular friction and promote the production of cartilage-related proteins, supporting cartilage synthesis. In vivo experiments involving the injection of nanocomposite hydrogels into rat knee joints with an OA model have demonstrated successful reduction of osteophyte formation and protection of cartilage from wear, highlighting the therapeutic potential of this approach for treating OA.

7.
Sci Rep ; 14(1): 4373, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388553

RESUMO

Cancer therapy necessitates the development of novel and effective treatment modalities to combat the complexity of this disease. In this project, we propose a synergistic approach by combining chemo-photothermal treatment using gold nanorods (AuNRs) supported on thiol-functionalized mesoporous silica, offering a promising solution for enhanced lung cancer therapy. To begin, mesoporous MCM-41 was synthesized using a surfactant-templated sol-gel method, chosen for its desirable porous structure, excellent biocompatibility, and non-toxic properties. Further, thiol-functionalized MCM-41 was achieved through a simple grafting process, enabling the subsequent synthesis of AuNRs supported on thiol-functionalized MCM-41 (AuNR@S-MCM-41) via a gold-thiol interaction. The nanocomposite was then loaded with the anticancer drug doxorubicin (DOX), resulting in AuNR@S-MCM-41-DOX. Remarkably, the nanocomposite exhibited pH/NIR dual-responsive drug release behaviors, facilitating targeted drug delivery. In addition, it demonstrated exceptional biocompatibility and efficient internalization into A549 lung cancer cells. Notably, the combined photothermal-chemo therapy by AuNR@S-MCM-41-DOX exhibited superior efficacy in killing cancer cells compared to single chemo- or photothermal therapies. This study showcases the potential of the AuNR@S-MCM-41-DOX nanocomposite as a promising candidate for combined chemo-photothermal therapy in lung cancer treatment. The innovative integration of gold nanorods, thiol-functionalized mesoporous silica, and pH/NIR dual-responsive drug release provides a comprehensive and effective therapeutic approach for improved outcomes in lung cancer therapy. Future advancements based on this strategy hold promise for addressing the challenges posed by cancer and transforming patient care.


Assuntos
Neoplasias Pulmonares , Nanotubos , Humanos , Terapia Fototérmica , Neoplasias Pulmonares/tratamento farmacológico , Ouro/química , Doxorrubicina , Dióxido de Silício/química , Fototerapia , Nanotubos/química
8.
J Anim Sci Biotechnol ; 15(1): 22, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331814

RESUMO

BACKGROUND: Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS: In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS: Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1ß, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS: ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.

9.
Animals (Basel) ; 14(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338165

RESUMO

Post-weaning diarrhea significantly contributes to the high mortality in pig production, but the metabolic changes in weaned piglets with diarrhea remain unclear. This study aimed to identify the differential metabolites in the urine of diarrheal weaned piglets and those of healthy weaned piglets to reveal the metabolic changes associated with diarrhea in weaned piglets. Nine 25-day-old piglets with diarrhea scores above 16 and an average body weight of 5.41 ± 0.18 kg were selected for the diarrhea group. Corresponding to the body weight and sex of the diarrhea group, nine 25-month-old healthy piglets with similar sex and body weights of 5.49 ± 0.21 kg were selected as the control group. Results showed that the serum C-reactive protein and cortisol of piglets in the diarrhea group were higher than those in the control group (p < 0.05). The mRNA expression of TNF-α, IFN-γ in the jejunum and colon, and IL-1ß in the jejunum were increased in diarrhea piglets (p < 0.05), accompanied by a reduction in the mRNA expression of ZO-1, ZO-2, and CLDN1 in the jejunum and colon (p < 0.05); mRNA expression of OCLN in the colon also occurred (p < 0.05). Metabolomic analysis of urine revealed increased levels of inosine, hypoxanthine, guanosine, deoxyinosin, glucosamine, glucosamine-1-p, N-Acetylmannosamine, chitobiose, and uric acid, identified as differential metabolites in diarrhea piglets compared to the controls. In summary, elevated weaning stress and inflammatory disease were associated with the abnormalities of purine metabolism and the hexosamine biosynthetic pathway of weaned piglets. This study additionally indicated the presence of energy metabolism-related diseases in diarrheal weaned piglets.

10.
Anim Nutr ; 16: 409-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371474

RESUMO

Rotaviruses (RV) are a major cause of severe gastroenteritis, particularly in neonatal piglets. Despite the availability of effective vaccines, the development of antiviral therapies for RV remains an ongoing challenge. Retinoic acid (RA), a metabolite of vitamin A, has been shown to have anti-oxidative and antiviral properties. However, the mechanism by which RA exerts its intestinal-protective and antiviral effects on RV infection is not fully understood. The study investigates the effects of RA supplementation in Duroc × Landrace × Yorkshire (DLY) piglets challenged with RV. Thirty-six DLY piglets were assigned into six treatments, including a control group, RA treatment group with two concentration gradients (5 and 15 mg/d), RV treatment group, and RV treatment group with the addition of different concentration gradients of RA (5 and 15 mg/d). Our study revealed that RV infection led to extensive intestinal architecture damage, which was mitigated by RA treatment at lower concentrations by increasing the villus height and villus height/crypt depth ratio (P < 0.05), enhancing intestinal stem cell signaling and promoting intestinal barrier functions. In addition, 15 mg/d RA supplementation significantly increased NRF2 and HO-1 protein expression (P < 0.05) and GSH content (P < 0.05), indicating that RA supplementation can enhance anti-oxidative signaling and redox homeostasis after RV challenge. Additionally, the research demonstrated that RA exerts a dual impact on the regulation of autophagy, both stimulating the initiation of autophagy and hindering the flow of autophagic flux. Through the modulation of autophagic flux, RA influence the progression of RV infection. These findings provide new insights into the regulation of redox hemostasis and autophagy by RA and its potential therapeutic application in RV infection.

11.
Eur Spine J ; 33(3): 1069-1080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246903

RESUMO

PURPOSE: To compare the clinical outcomes and radiographic outcomes of cortical bone trajectory (CBT) and traditional trajectory (TT) pedicle screw fixation in patients treated with single-level transforaminal lumbar interbody fusion (TLIF). METHODS: This trial included a total of 224 patients with lumbar spine disease who required single-level TLIF surgery. Patients were randomly assigned to the CBT and TT groups at a 1:1 ratio. Demographics and clinical and radiographic data were collected to evaluate the efficacy and safety of CBT and TT screw fixation in TLIF. RESULTS: The baseline characteristic data were similar between the CBT and TT groups. Back and leg pain for both the CBT and TT groups improved significantly from baseline to 24 months postoperatively. The CBT group experienced less pain than the TT group at one week postoperatively. The postoperative radiographic results showed that the accuracy of screw placement was significantly increased in the CBT group compared with the TT group (P < 0.05). The CBT group had a significantly lower rate of FJV than the TT group (P < 0.05). In addition, the rate of fusion and the rate of screw loosening were similar between the CBT and TT groups according to screw loosening criteria. CONCLUSION: This prospective, randomized controlled analysis suggests that clinical outcomes and radiographic characteristics, including fusion rates and caudal screw loosening rates, were comparable between CBT and TT screw fixation. Compared with the TT group, the CBT group showed advantages in the accuracy of screw placement and the FJV rate. CLINICAL TRIALS REGISTRATION: This trial has been registered at the US National Institutes of Health Clinical Trials Registry: NCT03105167.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Parafusos Pediculares/efeitos adversos , Fusão Vertebral/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Prospectivos , Resultado do Tratamento , Osso Cortical/diagnóstico por imagem , Osso Cortical/cirurgia , Dor/etiologia
12.
Int J Biol Macromol ; 258(Pt 2): 129116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171192

RESUMO

Vascular Plant One­zinc Finger (VOZ) transcription factor can respond to a variety of abiotic stresses, however its function in cotton and the molecular mechanisms of response to salt tolerance remained unclear. In this study, we found that GhVOZ1 is highly expressed in stamen and stem of cotton under normal conditions. The expression of GhVOZ1 increased significantly after 3 h of salt treatment in three-leaf staged upland cotton. Overexpressed transgenic lines of GhVOZ1 in Arabidopsis and upland cotton were treated with salt stress and we found that GhVOZ1 could respond positively to salt stress. GhVOZ1 can regulate Arabidopsis Vacuolar Proton Pump Pyrophosphatase (H+-PPase) gene (AVP1) expression through specific binding to GCGTCTAAAGTACGC site on GhAVP1 promoter, which was examined through Dual-luciferase assay and Electrophoretic mobility shift assay (EMSA). AVP1 expression was significantly increased in Arabidopsis with GhVOZ1 overexpression, while GhAVP1 expression was decreased in virus induced gene silenced (VIGS) cotton plants of GhVOZ1. Knockdown of GhAVP1 expression in cotton plants by VIGS showed decreased superoxide dismutase (SOD) and peroxidase (POD) activities, whereas an increased malondialdehyde (MDA) content and ultimately decreased salt tolerance. The GhVOZ1-AVP1 module could maintain sodium ion homeostasis through cell ion transport and positively regulate the salt tolerance in cotton, providing new ideas and insights for the study of salt tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gossypium/genética , Tolerância ao Sal/genética , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Arabidopsis/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo
13.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198728

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Óleos Voláteis , Doenças dos Suínos , Suínos , Masculino , Animais , Saccharomyces cerevisiae , Fator de Necrose Tumoral alfa , Óleos Voláteis/farmacologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Diarreia/microbiologia , Diarreia/veterinária , Dieta/veterinária , Inflamação/veterinária , Superóxido Dismutase , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Ração Animal/análise , Desmame
14.
Adv Healthc Mater ; : e2302556, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238011

RESUMO

Drug-induced liver injury (DILI) is a severe condition characterized by impaired liver function and the excessive activation of ferroptosis. Unfortunately, there are limited options currently available for preventing or treating DILI. In this study, MnO2 nanoflowers (MnO2 Nfs) with remarkable capabilities of mimicking essential antioxidant enzymes, including catalase, superoxide dismutase (SOD), and glutathione peroxidase are successfully synthesized, and SOD is the dominant enzyme among them by density functional theory. Notably, MnO2 Nfs demonstrate high efficiency in effectively eliminating diverse reactive oxygen species (ROS) such as hydrogen peroxide (H2 O2 ), superoxide anion (O2 •- ), and hydroxyl radical (•OH). Through in vitro experiments, it is demonstrated that MnO2 Nfs significantly enhance the recovery of intracellular glutathione content, acting as a potent inhibitor of ferroptosis even in the presence of ferroptosis activators. Moreover, MnO2 Nfs exhibit excellent liver accumulation properties, providing robust protection against oxidative damage. Specifically, they attenuate acetaminophen-induced ferroptosis by inhibiting ferritinophagy and activating the P62-NRF2-GPX4 antioxidation signaling pathways. These findings highlight the remarkable ROS scavenging ability of MnO2 Nfs and hold great promise as an innovative and potential clinical therapy for DILI and other ROS-related liver diseases.

15.
Small ; 20(1): e2304438, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661593

RESUMO

The cell elimination strategy based on reactive oxygen species (ROS) is a promising method for tumor therapy. However, its efficacy is significantly limited by ROS deficiency caused by H2 O2 substrate deficiency and up-regulation of cellular antioxidant defense induced by high glutathione (GSH) content in tumor cells. To overcome these obstacles, a multifunctional self-cascaded nanocomposite: glucose oxidase (GOX) loaded NaYF4 :Yb/Er@Mn3 O4 (UC@Mn3 O4 , labeled as UCMn) is constructed. Only in tumor microenvironment, it can be specifically activated through a series of cascades to boost ROS production via a strategy of open source (H2 O2 self-supplying ability). The increased ROS can enhance lipid peroxidation and induce tumor cell apoptosis by activating the protein caspase. More importantly, the nanozyme can consume GSH to inhibit glutathione peroxidase 4 (GPX4) activity, which limits tumor cell resistance to oxidative damage and triggers the tumor cell ferroptosis. Therefore, this strategy is expected to overcome the resistance of tumor to oxidative damage and achieve efficient oxidative damage of tumor. Further, degradation of the Mn3 O4 layer induced by GSH and acidic environment can promote the fluorescence recovery of UC fluorescent nuclear for tumor imaging to complete efficient integration of diagnosis and treatment for tumor.


Assuntos
Ferroptose , Nanocompostos , Neoplasias , Humanos , Glucose Oxidase , Espécies Reativas de Oxigênio , Apoptose , Imagem Óptica , Antioxidantes , Glutationa , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio
16.
Plant J ; 117(3): 694-712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988560

RESUMO

Xyloglucan, an important hemicellulose, plays a crucial role in maintaining cell wall structure and cell elongation. However, the effects of xyloglucan on cotton fiber development are not well understood. GhMUR3 encodes a xyloglucan galactosyltransferase that is essential for xyloglucan synthesis and is highly expressed during fiber elongation. In this study, we report that GhMUR3 participates in cotton fiber development under the regulation of GhMYB30. Overexpression GhMUR3 affects the fiber elongation and cell wall thickening. Transcriptome showed that the expression of genes involved in secondary cell wall synthesis was prematurely activated in OE-MUR3 lines. In addition, GhMYB30 was identified as a key regulator of GhMUR3 by Y1H, Dual-Luc, and electrophoretic mobility shift assay (EMSA) assays. GhMYB30 directly bound the GhMUR3 promoter and activated GhMUR3 expression. Furthermore, DAP-seq of GhMYB30 was performed to identify its target genes in the whole genome. The results showed that many target genes were associated with fiber development, including cell wall synthesis-related genes, BR-related genes, reactive oxygen species pathway genes, and VLCFA synthesis genes. It was demonstrated that GhMYB30 may regulate fiber development through multiple pathways. Additionally, GhMYB46 was confirmed to be a target gene of GhMYB30 by EMSA, and GhMYB46 was significantly increased in GhMYB30-silenced lines, indicating that GhMYB30 inhibited GhMYB46 expression. Overall, these results revealed that GhMUR3 under the regulation of GhMYB30 and plays an essential role in cotton fiber elongation and secondary wall thickening. Additionally, GhMYB30 plays an important role in the regulation of fiber development and regulates fiber secondary wall synthesis by inhibiting the expression of GhMYB46.


Assuntos
Fibra de Algodão , Genes de Plantas , Transcriptoma , Metabolismo dos Carboidratos , Gossypium/genética , Regulação da Expressão Gênica de Plantas , Parede Celular/metabolismo
17.
Horm Metab Res ; 56(3): 214-222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052425

RESUMO

The aim of the study was to investigate the relationship between VEGF-460C/T polymorphism and susceptibility to diabetic retinopathy (DR) in type 2 diabetes mellitus (T2DM) by meta-analysis. A comprehensive search was conducted across six databases until September 2023 to identify studies examining the association between VEGF-460C/T polymorphism and susceptibility to DR. Data process was performed by Stata 15.0 software. Eight studies were included, involving 1463 patients with DR. In the overall analysis, the difference was statistically significant only in the homozygous model (CC vs. TT: OR=1.86, p=0.048). A subgroup analysis of 6 papers with genotype frequency satisfying HWE in the control group indicated significant differences among the allele (C vs. T: OR=1.34, p=0.037), recessive (CC vs. CT+TT: OR=1.96, p=0.022) and homozygous (CC vs. TT: OR=2.28, p=0.015) models. However, in the dominant and heterozygous models, the difference was not statistically significant. The sensitivity of the HWE-based subgroup analysis showed that the conclusions in other gene models except the heterozygote model were not robust. This meta-analysis indicated that VEGF-460C/T gene polymorphism is associated with susceptibility to DR in T2DM. Allele C and genotype CC at the VEGF-460C/T locus are associated with an increased risk of DR in T2DM. However, considering that the results are not robust, more trials involving more rigorous design are needed to verify the findings of this review in the future.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Fator A de Crescimento do Endotélio Vascular/genética
18.
Plant Biotechnol J ; 22(2): 413-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816143

RESUMO

Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.


Assuntos
Arabidopsis , Musa , Celulose/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética
19.
Mol Plant ; 17(1): 112-140, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102833

RESUMO

Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.


Assuntos
Lignina , Madeira , Madeira/genética , Madeira/metabolismo , Lignina/metabolismo , Ecossistema , Plantas/metabolismo , Parede Celular/metabolismo , Árvores/genética
20.
Carbohydr Polym ; 326: 121613, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142074

RESUMO

This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 â†’ 3)-ß-ᴅ-Galp-(1→3)-ß-ᴅ-Galp-(1 â†’ 3)-ß-ᴅ-Galp-(1 â†’ 3)-ß-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-ß-ᴅ-Galp-(1→, →3,4)-ß-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.


Assuntos
Antioxidantes , Yucca , Suínos , Animais , Ratos , Antioxidantes/química , Yucca/química , Fosfatidilinositol 3-Quinases , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...